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1 Introduction

Attitude maneuvers of a spacecraft generate changes in the spacecraft rotationa state [1], [2]. idedly,
attitude maneuvers take place without changing the center of mass (CM) velocity, However, in the
case Of the Cassini spacecraft (which is scheduled for launch to Saturn in October of 1997), thrusters
will be used for some attitude maneuvers and they are mounted so as to generate changes in the
CM velocity. The resultant C'M velocity changes will significantly alter the spacecraft trajectory.
Navigation has to model these changes in order to predict what trajectory the spacecraft will actually
follow. For this reason, ROTRAN, a computer simulation package (presented at this conference last
year [1]) was developed by this author for JPL navigation. ROTRAN generates the CM velocity
change resulting from an attitude maneuver using thrusters,

In this report, the velocity change resulting from turns about the spacecraft y axis will be studied.
First, a mode] called the half angle model will be derived which linearly relates the angle between *“
initial and final CM velocities, 8,, to the total turn angle magnitude, 6,,. Next, a model will be
derived that linearly relates the final CM velocity magnitude to the square of the spacecraft rigid
body radius of gyration. Finally, comparisons will be made between the above models and results
of ROTRAN simulations.

Since the half angle and radius of gyration models are linear, they can be used to compute 8,
and the final vel ocity magnitude without the cost (albeit greater accuracy) of ROTRAN. A principal
goal of this study is to understand the validity and limitations of the above models and when the
full power of ROTRAN is needed.

2 General Motion Of The Center Of Mass

In this paper, a general mass is any object of nonzero mass, Fig. (1) shows the case of a genera mass
at some time ¢ relative to a coordinate system [I] which is assumed to be an inertial frame (aframe
in which Newton’s laws of motion are valid). Approximating the general mass as a collection of
infinitesmally small point masses, each such point mass i will have some well defined position ¥i(t)
and some fixed mass m. Thus the total massis M = 3~ mi. This leads to the following definition
for a special point called the center of mass of the general mass or more simply, the center of mass
(also called the CM).

l-il:m(t) = E'"—Kliﬂ)‘ | (l)

The motion of R, relative to [1] is called translational motion of the general mass. This motion is
also described by the vector V., below, the velocity of the center of mass.

Ven(t)= Tl @




3 The Cassini Spacecraft Model

A picture of the Cassini spacecraft is shown in Fig. (2). The spacecraft is modelled as arigid body
subject only to forces generated by attitude control thrusters. Thruster firings are controlled by the
Attitude and Articulation Control System (AA CS), the operation of which is also modelled. Each
thruster has a position and unit force direction fixed in [$) as shown in Fig. (3) (see aso Fig. (2)).
The force magnitude of the thrusters are in general diflerent but are taken to be identical for this
study. To a first approximation, the thrusters are at the corners of arectangle parallel to and above
the zy plane with sides parallel to the z and y axis. This rectangle is also centered on the z axis.
However, as will be seen later, there are deviations from this alignment. Nevertheless, the above
approximations will do for the current discussion.

The force magnitude of each thruster is assumed to have a zero rise and fall time and to have a
constant force magnitude when on. That is, the force magnitude versus time is a series of rectangular
pulsea. Therefore, the force due to thruster k when projected in [S] is either 6 or some constant F.
Fig. (4) shows the thruster positions and forces in the zz plane when viewed from the +y axis. Note
that if thrusters 1 and 4 fire, then the spacecraft will undergo a righthanded (counterclockwise) turn
with respect to they axis. A lefthanded (clockwise) turn can be accomplished using thrusters 2 and
3. Note that this involves using the z facing thrusters to implement y axis turns. However, y turns
can also be implemented using « facing thrusters. Specifically, pair 7 and 8 and pair 5 and 6 can be
used for right and lefthanded turns respectively. ‘Jhe use of x and z facing thrusters will be studied
in this report.

If the z facing thrusters are used, then they will generate a unit acceleration vector a.p, = a,
(Eq. (6)) of the center of mass in the spacecraft -z direction as shown in Fig, (4). If the = facing
thrusters are used, then either unit acceleration vector a, , or a_, will apply, depending on the turn
direction. &4, and &_, point in the 4z and -z direction of the spacecraft, respectively..

An extensive description of the-AACS can bc found in references [1] and [2]. However, a brief
discussionisin order here. First, consider the case where the frames {1} and [S.] of Fig. (1) have the
same origin as athird frame [ SC] as shown in Fig. (5). [SC] is called the command frame for reasons
to be presented shortly. Note that [S,) defines the actual rotational state of the spacecraft since it
is always parallel to the spacecraft frame {S]. For this reason, [S,] will be called the actual frame.

In actual operation, the time history of the attitude of [SC] relative to (] is given to the spacecraft.
In addition, the time history of the attitude rate of [S.] relativeto [I] is also sent to the spacecraft.
The attitude rate is represented by the angular velocity vector &, and is called the command rate.
The combination of the command frame and command rate is called the command state.

The job of the AACS is to fire the attitude thrusters so that the frame [S,] and its angular
velocity relative to [I], &, (also called the ectual rate), remain within some specified dead band

relative to [SC] and .. Thisis done by a closed loop three axis stabilized feedback system.
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6 4 DYNAMICS OF A SINGLE AXIS TURN
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In this study, [Se] is commanded to maintain a common y axis with [I] as shown in Fig. (6).
Thus, the command frame and rate are completely defined by 6, and an angular velocity with a
y component only, respectively (in Fig, (6), w, is the command rate magnitude). As shown in the
figure, WC is set to increase linearly with time from O to wp, thru time ,. This time span is called
the acceleration phase. The magnitude remains constant for a time span 1., the constant rate phase.
Finally, the magnitude decreases from wy, back to O during the deacceleration phase over a time span

4. Defining t,, =1, 4 t. + 14 as the total turn time, the following relates the angle and angular rate
(where O <t<t,,).

or(t) = ‘ltwc(t)dt %
'adior = W (8)

Therefore, 6, exhibits a quadratic, linear and then quadratic behaviour for the three phases. ¢,, is
the final value of 8, and is called the turn angle.

During any phase of the turn, thruster firings will take place if the command and actual frames
are misaligned beyond the dead band. However, thruster activity is expected to be greatest during
the acceleration and deacceleration phases and least during the constant rate phase.

4 Dynamics Of A Single Axis Turn

Figs. (7) thru (9) show the translational and rotational state of the spacecraft respectively during
the acceleration, constant rate and deacceleration phases of a lefthanded (clockwise) turn about the
spacecraft yaxis (Fig. (4)). (1) and [S) are respectively the inertial and spacecraft fixed frames of

Fig. (). [S] is the command frame of Figs. (5) and (6). The frame [S,) of Fig. (1) is strictly

speaking a fourth frame. However, it is assumed that the AACS maintains an indistinguishable
difference between [S] and [S,). Therefore, [S.] is not explicitly shown in this example. R.,, is the
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center of mass vector. ¢, and t4 of Fig. (6) are taken to be equal. In this example, the z facing
thrusters of Fig. (4) reused to generate y axis turns. From Fig. (4), this means that the center of
mass unit acceleration vector is a, and is always in the negative 2 direction of [$]. The vector a.q
is parallel to & However, it has its origin at the origin of [7). At t= O, it iS assumed that the CM
is stationary and that [S] is not rotating relative to {1}

Fig. (7) shows conditions at three successive times ¢ == O, t1and t2 during the acceleration phase.
Without loss of generality, the three frames [1], [Se] and [S] are taken to be parallel a t = O. As
tincreasesto t1, [SC] rotates as shown. Therefore, {S] is instructed to rotate in the same way.
In order for this to happen, thrusters 2 and 3 of Fig. (4) must fire. At t= O, this leads to the
accelerations #&,(0) and &,4(0). At t=11,[S]) will have rotated, hopefully so that [S,) and [SC] are
indistinguishable. This means that, at t = t,8:a(t1) will aso rotate as shown. This covers the
rotational change up to t1- For the translational change, note that the CM will initially move in the
- z direction of [I). However, the spacecraft and unit CM acceleration also rotate, Therefore, due
to Eq. (6), the CM will shift somewhat as shown. Note that the CM position at ¢ = O is shown in
the subfigure for conditions at ¢ = ¢, for comparison.

At 1 = 12,[S,]) has rotated some more. [S] is therefore instructed to keep up, and all vectors
change as shown in the figure. The subfigure for t =12 aso shows the CM position at t = O for
comparison.

Fig. (8) shows conditions at three successive times ts, t4 and ts during the constant rate phase.
During this phase, [SC] is rotating at a constant rate. Assuming that [S] rotates at the same rate as
[Se] at the start of the phase, then the two frames will rotate together and no thruster firings will
be needed. [S] will therefore maintain this constant rate of rotation and V. Will remain constant
due to Eq. (3). The CM will thus move in a straight line during this phase.
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Finally, Fig. (9) shows conditions at three successive time-s 16,17 and 8 during the deacceleration
phase. During this phase, the rate of rotation of [SC) is slowing down. in order for [S] to do the
same, thrusters 1 and 4 of Fig. (4) must fire, yielding the unit acceleration &, as shown. Recall that
the CM moves according to Eq. (6).

5 The Half Angle Formula

5.1 Derivation

The movement of &,,in[1] will sufficiently describe the rotational motion in Figs. (7) thru (9) for
the purposes of this discussion. Under the above conditions, this vector will remain in the zz plane
of [1]. Fig, (1 O) shows the variation of &,,in this planc as a function of 6, (which is measured
clockwise from the -2z axis). 6,, 6. and #4 are the angles between the start and stop values of 6,
respectively in the acceleration, constant rate and deacceleration phases. Note that & (r ) is shown
specifically for avalue of 8, in the deacceleration phase.

From Figs. (6) and (10), Eqg. (7) and the condition t, == ta in Section (4), one gets the following.
6a =0, : ) (9)
By definition, the acceleration of Eq. (3) can be written as a magnitude A.,, times the unit vector

ﬁ;a .
Kcm(t) == Acm(t)aza(t) (IO)
This can be combined with Eqg. (3).

vcm \1 Acm(T)aza(T)dT (11)

The above can be converted as follows after changing the independent variable from tto 6.

6,
Vem(0:) = /0 Aem(0)24 (o)g-;do (12)

It was assumed in Section (4) that the spacecraft coasts during the constant rate phase with no
thruster activity. ‘1'bus, Acm(6,) is O for 6, <6, <0, +0.. A-ssuming that the thrusters are on
continuously during the acceleration and deacceleration phases and assuming conditions outlined in
Section (3), one gets from Egs. (3) and (10) that A, is constant at A.,., in the acceleration and
deacceleration phases. This yields the following result for V,,, at the end of the turn when coupled
with Eq. (8) and Fig. (,10).

¢t 0
ar 0) s aaz(o))
Vem (Oro :Acmo / t a ( / + = do (13)
(6re) =4, [ Wed Jo 40, wel0)
After an extensive amount of algebra, calculus and geometry, the above can be modified into the
next equation with extensive use of the functional dependence of 6, and w. in Fig, (6).

¥ b (a 8,4(0r0 -
Vem(fro) = A"""‘/zf:,,, [ /0 (a,a(o)i,\/o_(l) 0)) do] (14)

It is now convenient to define the following for the sum in the above integrand.
A, (0)a, (6)=8a,4(0) +- 8,4(0r0- 0) (15)
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A, () and &, (9) are respectively the magnitude and unit direction of the vector sum on the RHS of
the above.

The next step is proof that a, in Eq. (15) isindependent of 8. First, note Fig. (1 1). Inthis figure,
the z,y and z axis of [I] are positioned as in Fig. (10). The two unit vectors a,.(#) and &, 4(r, -0)
on the RHS of Eq. (15) are shown. It should be clear that a,,(6) is rotated by # clockwise from the
-z axis. Similarly, &.q (8, - 6) isrotated by 6 counterclockwise from the final angle 8,,. The sum
of the two, and therefore a,, will point halfway between &,,(8)and &,4(0,, - #) forming the angle
« as shown. In other words, &, points at an angle halfway across the rotation angle 6,,, a rotation
constant independent of @ in Eq. (15). This allows the following rewrite of Eq. (14).

8y Acmo 2w,,, A (") (16)

a ch (ero)

\"'cm(oro)

n

"

In other words, the final velocity isin a direction halfway across the full rotation angle O,,. From

Figs. (4), (7) and (1 1), note that the initial velocity V., (0) is in the -z direction of [Z]. 6, is the
angle between theinitial and final velocity. This leads to the following.

é
0, = -2 17
: (17

This is the form of the half angle formula for this case where 2 facing thrusters are used for y axis
turns. When the 2 facing thrusters are used instead for y axis turns, one gets the following formula
after a similar derivation (proof is left to the reader).

0, =90". . %‘.’ (18)
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This is. still called a half angle formula since it is linear and the proportienality constant has a
magnitude of 1/2.
5.2 Summary Of Assumptions

The following are assumptions used in the derivation of Eq. (17). A key point in the assumptions is
symmelry.

1. The Cassini spacecraft is arigid body.
2. Forces on the spacecraft are due to attitude control thrusters only.
3. Each thruster has a position and unit force direction fixed in [S} (Fig. (3)).

4, Each thruster has the same force magnitude with a zero rise and fall time. Therefore, the force
profile versus time is a series of rectangular pulses.

5. The thrusters are symmetrically located at the corners of arectangle parallel to and above the
zy plane of [S] with sides parallel to the z and y axis. ‘I’ he rectangle is centered on the z axis
(Fig. (3)).

6. The time of the acceleration and deacceleration phases are equal (1, =14 in Fig. (6)).

7. Thrusters fire continuously throughout the acceleration and deacceleration phase but not at
al during the constant rate phase.

8. The frames [SC] and [S.] (Figs. (1) and (b)) are identical.
Note that items (5) thru (8) heavily involve symmetry. These will be referred to in results covered
in Section (8).

6 The Relationship Between A\7cm And The Radius Of Gy-
rat ion

Hy,y is the moment of inertia about the spacecraft y axis and M is the spacecraft mass [3]. ‘I’his
leads to the definition of the radius of gyration about the spacecrafty axis, r,.

o= (42) (19

Using scalar formulas and several simplifying approximations, a simple relationship between

AV, = (20)

Vem(Bro)

and r, can be derived. ‘I’ he derivation begins with the following for the force on the spacecraft
(At =2t,since, by assumption, no forces act during the constant rate phase).
AV,

‘z ——— 21
FaM I~ (21)
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The torque eon the spacecraft can be approximated by the following (where r is an effective thruster
moment arm and Aw = wp, in Fig. (6)).

Aw
N ~ HW-K‘-;-, (22)

All the above can be combined to yield a simple expression for AV.
AVio & —op (23)
2
£y -t°—Aw
r

The important point from the above is that A V,, is proportional to the square of the radius of
gyration for fixed Aw and r. Of course, the above uses a number of simplifications. Nevertheless,
the validity of the above will be investigated using two cases where the ratio Aw/r is approximately
constant and where r, is different.

7 Description Of Studied Cases

This study isdivided into six cases. Parameters that are constant for all cases are listed in Table(1).
Given a specific case, a set of command states are selected. Each command state results in a different
turn angle. Given all the above, the command state is fully defined by Fig. (6) where t, = tq.

Recall that #,, is the turn angle and is the area under the curve for w, in Fig. (6). For a given
case and for large turn angles, 6,, is varied by varying t. from onc command state to the next,
maintaining t, and w,, at a constant value. This will work for values of 8,, greater than the area
under the w, curve corresponding to t.= O. The value of 6, in this case is ;¢ = wmts. Vaues
of 8,, < 6,., are acheived by first setting t. = O and using the same slope for WC in the acceleration
and deacceleration phases as used when 6,, > 6,... Define w, as the value of w, at the end of the
acceleration phase. The different turn angles for 8,, < 8, are acheived by varying w, and ¢, within
the above slope constraint.

For agiven case, wyy, isundefined for 6,, < #8,.. Nevertheless w,, is now defined as the peak rate
for those turns where 6,, > 0, (in this study, all cases have some 6,, > 8,. o this definition poses
no problem). Since this peak rate by construction is the same for all such 8,,,wm by the above
definition is a case parameter. Note that wa=: wp, fOr 8,, > #r. aNd w4 < wa, Otherwise. By the
same token, for a given case, the value of ¢, is constant by construction for 6, > 6,.. ‘1’ his value of
1, is another case parameter and is defined as 1,,,,. Given all the above, the next step isto set tan..
However, a quick review of rotational dynamics is now in order.

The rotational state of a rigid body is completely defined by the Euler equations [3]. In the
following, Nis the total torque relative to the CM, & is the angular velocity of a body fixed frame
relative to an inertial frame and H is the inertia tensor. All vectors and tensors are projected in a
body fixed frame [S].

N = oxTio+ Waa (24)
Neglecting the first term above and assuming a diagonal inertia tensor, we get (where i € (z,y, 2)),

d N;

= 7, @)
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7 DESCRIPTION OF STUDIED CASES

Parameter Units Value
Control law . Bang/Bang
 Bang/Bang dead band (x,y,z) | radians 5% 107 5%+ 10-7 5+ 10-7
| Bang/Bang tine eonsant (x,y,2) | seconds 30.0 30.0 30.0
Bang/Bang thruster on time milliseconds | 65
Sample time . milliseconds | 125
ROTRAN sample time T milliseconds |-5

Thruster Parameters
All thrusters have a z coordinate of +3.0 meters
and a force magnitude of 0.6N

Thruster number | XYW CCoordinates in [S] (ineters) Unit Force in [S]
1 1.26 158 ~2
2 --1.25 1.58 —2
3 --1.26 -1.58 -2
4 1.25 T 158 -2
5 1.26 1.58 -z
6 1.25 158 —-
7 -1.25 1.8 +z
8 -1.26 _ -158 +z

Table 1: Parameters constant for all cases




17

Parameter Units [ Value B
Spacecraft mass R“g 52222 _
Center of mass meters Z0.03 -0.03°'1.38
Inertia tensor Kg—M?|[7625.0 8020.6 3394.8 |
(xx, YY, zz, xY, xe,y))| |-852 1374 -612 |

Table 2: Beginning Of Mission (BOM) mass properties

Of particular interest in the above equation is the case where ¢ = y. For the y axis turns investigated
here, one set of thrusters is used in the acceleration phase, another during deacceleration. Ny, is
the magnitude of the y torque component generated by the acceleration phase thrusters while Ny 4
is correspondingly for the deacceleration phase. Note that Ny, is not necessarily equal to Nya.

This study exclusively uses a bang/bang control law [2]. This means that a thruster may or
may not fire in a sample period. If it does fire, it is on only for some At beginning at the start
of the sample period and off for the rest. For a 50% duty cycle, this At ishalf the sample period
(However, note in ‘I’able (1) that the fraction of the sample period during which thrusters are on is
65/125, alittle over 1/2. ‘I’hisis due to the fact that the thruster on time has to be a multiple of the
ROTRAN sample time.). Given a case and therefore an w.,, the time needed for the acceleration
phase thrusters to increase the rate to w,, from O or for the deacceleration thrusters to decrease the
rate to O from we, is (using Eq. (25), assuming a 50% duty cycle and where Ny is respectively Nya
or Nyd),

150 = 2wmHy /N, (26)

tam IS defined to be the larger of the two times above for the two thruster sets. Or equivalently, tam
is set baaed on the smaller of Ny, and Ny4. This way, the thruster set with the smaller torque value
will be able to keep up with the command rate in Fig. (6). Note that several assumptions are used
to derive the formula used to set t.,,. However, these assumptions do not matter as long as the
chosen value leads to a command state that can be followed by the acceleration and deacceleration
thrusters.

In this study, the use of X and Z facing thrusters for y axis turns will be investigated, This
study will alse use mass properties for expected beginning of mission ( BOM ) and end of mission
(EOM) conditions (Tables (2) and (3) [4]). Finally, two values of w,, are used, 0.25deg/sec (normal
rate) and 0.75deg/sec (sprint rate).

Each case is identified by three character strings. The first string is either X or Z -for the
thruster set. The second string is either BOM or EOM to identify the mass property. The last
string is either nermal or sprintto identify the value of w,,,.. The cases used for z facing thrusters are
(X, BOM, sprint), (X, BOM, normal) and (X, EOM, normal). The cases for ¢ facing thrusters are
(Z, BOM, sprint), (Z, BOM, normal) and (Z, EOM, normal). Tables (4) thru (9) contain parameters
for each case, ’

8 Simulation Results

Values of 6, and AV;, versus 8., for all cases are shown in Tables (10) thru (15). Corresponding
plots are shown in Figs. (12) thru (17).
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8 SIAI[JL,ATIOA’ RESULTS

Parameter Units Value —

Spacecraft mass Kg 2019.2

Center of mass meters 0.15 0 0 31.16

Inertia tensor Kg- M?15636.6 4727.0 2909.5
(% vy, 7z, xY, xs,y2)|| 805 -346 666 _]

Table 3: End Of Mission. (EOM) mass properties

Parametef Units = Value
Wm deg/sec |-0.75
Nya IN-MT 1944
Nyd N-M [ 1.944
lam " "seconds | 108.01

C mmand _State Parameters

bro (degs) | ta_(sees)] i (secs))Wqwiddoggee)
19" | 3795 |~ 0~ 0.2635
20° 5367 |~ "0 0.3726
3" | 6573 |- 00 0.4564
6@° ~| 9296 0 0.6454
9@° | 10801 | 11.99 0.75
IR0 | 108.01 | 51.99 -t 0.75
10" ~| 108.01 | 91.99 0.75
I80° [ 108.01 | 131.99 0.75

Table 4: Parameters for case (X, BOM, sprint)



Parameter | Units Value

[ Win deg/sec | 0.2b
Nya TN -M 154
Nya N-M 1944
tam -t seconds | 36

Command State Parameters
In all cases, 1o = tam and wo = Wn

0, ((degs)| 1. (sccs)
10° 4§
20° |

_30° | 84|
60° _204
90° 324
120°° | 444
150° 564 4

_180° | 684

Table 5: Parameters for case (X, BOM, normal)
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8 SIMULATION RESULTS

Paramecter | Units Value
W | deg/sec 1 0.25
Nya | N-—M|0.2208
Nya | N-M |0.2208
tam seconds | 18.68

Command State Parameters
In all cases, Ly = oy aNd wa = wm

6, (degs) | 1. (secs)
10° 21.32
200 61.32

[ 300 101.32
60° 29132
90° 341.32
1205 461.32
[ 150° 581.32
180°" ] 701.32

Table 6: Parameters for case (X, EOM, normal)

Parammeter | Units Value
Wi, _q_dcg/sec 0075
Nya — | N-MM 1.1470
Nyd N~ M {1542

[ tam | seconds | 142.84

Command State Parameters

0,, (degs) | 1. (secs) [ 1. (secs) | wa (deg/sec)
30° 75.59 0 0.3969
60° 106.9 0 0.5613
90° 130.92 0 0.6874
120° 142.84 17.16 0.75
150° 142.84 57.16 0.75
180° 14284 | 97.16 0.75

Table 7: Parameters for case (Z, BOM, sprint)




Parameter | Units Value
Wm "I deg/sec | 0.25
Nya TITN=-M 11470
Nya TN M [ 1542
tam scconds | 47.6

Command State Parameters

In all cases, 15 = lam_and w, = wy,

0y, ((degs) |t (secs)
30° 124
60° 1924
90° 312.4
120° 4324
150° 552.4
180° | 6724

‘i'able 8: Parameters for case (Z, BOM, normal)

Parameter | Units Value
W _:l deg/sec | 0.25
Nyo j N-M|1.686
Nyd I N-M 132
tam | seconds | 31.11

Command State Parameters
In all cases, ta = tam aNd wa= wp

0,, (degs) [ t. (sccs)
30° 88.89
60° 208.89
90° 328.89
120° 448 89
150° 568.89

180° | 688.89

Table 9: Parameters for case (Z, EOM, normal)
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22 8 SIMULATION RESULTS

8,, ((degs)] 8, ((degs)| AV,, (m/scc)
10 | 8610 |4£0®s1D*?
20 80.01 1.318+ N3
30 | 7506 | 2463%10°°
60| 60a7 7022+ 103
90 45.14 1.249 #1002
120 30,16 1.741.741 + 10~ 7
150 1519 | 2.21M4% 1072
180 7018 |2.2842% 10 ?

Table 10: Results of case (X, BOM, sprint)

0ro (degs) 0_UT_T(deg§) TAVroo (m/scC)
10 | 8407 |—2.174%10-*
T2 T 7999 | LiEm#10°°
30 74,82 L830+100°
60 ©759.993.845 3384541073
90 45.03 55981003
120 2997 |'66959+10°°
150 |_ 14.98_ | 7.858¥10°°
180 _ 006 | 8207¥10°°

Table 11: Results of case (X, BOM, normal)

Plots of v versus 6, for cases (X, BOM, sprint) and (Z, BOM, sprint) are shown in Fig. (12).
The solid lines show the theoretical half angle models for the # and z facing thrusters. Simulated
data points are represented by circles and are connected by dashed lines. Note that agreement is
very good. However, the dlight deviation between simulation and theory for the 2 facing thrusters
can be explained. First, note from Table (7) that Nya < Nya. Thus, the acceleration thrusters
will have to fire during more sample periods than the deacceleration thrusters in order to generate
the same Aw during time ¢,. ‘I’his means that the contribution to V., is not the same for the
two phases. This violates symmetry conditions listed in Items (5) thru (8) in Section (5.2). Using
Fig. (1 1), the reader should be” able to see that this results in a 8, less than the half angle model
for larger turn angles. By contrast, note from Tables (4) thru (6) that Ny. = Nyq for all three cases
using = facing thrusters. This leads to better agreement as can be seen in Figs. (12) thru (14).

Fig. (13) s’ hews the same type of plot for cases (X, BOM, normal) and (Z, BOM, normal). The
deviation between theory and simulation for z facing thrusters is for the same reason as inFig. (12)
(Table (8)).

Finally, Fig. (14) shows results for cases (X, EOM, norma) and (Z, EOM, normal). In this
case, the deviation for z facing thrusters leads to an increase of the simulated 6, relative to the
half angle model. This can be explained by noting from Table (9) that Ny, > Nya. Therefore, the
deacceleration thrusters must fire more often than the acceleration thrusters in order to generate
the same Aw during time 1,. It is |eft to the reader to see that this assymetry leads to the deviation




0;, (degs) | 6, (degs) [ AV;, (m/sec)
10 786.98 5.892%10°¢
20 80.15 1511+10°3
30 7544 2468+ 1073
60 60.38 5.156% 103
90 4488 7493+ 10°°
120 29.88 9.311+10°3
150 15.17 1.043%10-2
180 012 1.002+10-2

Table 12: Results of case (X, EOM, normal)

0ro (degs) | 0, (degs) [ AV,, (m/scc)
30 14.78 1.669+ 107
60 729.55 2232+ 10~ 7
90 T44.24 2476+ 107
120 "58.90 2.288% 10° 2
150 72,90 1.677+10°7

180 85.89 9.549+ 1073

‘I"able 13: Results of case (Z, BOM, sprint)

0ro (degs) 0, degske) [Vr, Vinfihe/eex)
30 14.71 1.049+ 10-2
60 729.20 9.513+10-3
90- 4368 7.031+10°3
120 "57.96 5.807 % 1073
150 T70.34 3.261+10°3
180 762.40 5.601%10°7

Table 14: Results of case (Z, BOM, nornal)
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24 8 SIMULATION RESULTS

0r, (degs) | 0, (degs) | AV,, (m/sec)
30 16.72 1.616+ 1077
60 3389 1.481% 1072
90 51.34 1.226% 10~ 2
120 70.64 8994+ 10°3
150 95.96 5294+ 10-3
180 160.5 2158+ 1073

Table 15: Results of case (Z, EOM, normal)

as shown.

The velocity magnitude versus 8., is shown for al cases in Figs. (15) thru (17). For 2 facing
thrusters, the general trend can be understood with the aid of Fig. (11). For small turn angles, the
acceleration andl deacceleration phases vectorally enhance V.,,, to afirst approximation. However,
AV,, issmall since the acceleration arrd deacceleration phases are not that long. For large turn
angles, there is significant cancellation due to symmetry, leaving only an r component for a 180°
turn angle. This suggests that AV,, peaks somewhere between 6,, = 0° and 180°. This is basicaly
what is seen in Figs. (15) thru (17). For z facing thrusters, it is left to the reader to see that the
acceleration and deacceleration thrusters vectorally cancel for small turn angles, For larger turn
angles, the two phases generate a vectoral enhancement. Also, the time of the acceleration and
deacceleration phases increases with the turn angle. This suggests that the velocity magnitude will
start out at O and increase. Again thisis basically what occurs in Figs. (15) thru (17).
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This section is concluded with an investigation of Eq. (23). Results arc shown in Tables (16) and
(17). TaMe (16) shows results when using = facing thrusters. The column labelled AV, o(£oary iSthe
velocity magnitude resulting in the case (X, EOM, normal). The column labelled AVyosoar)isthe
velocity magnitude resulting in the case (X, BOM, normal) for the same turn angie. From Tables (5)
and (6), all turn angles involve a nonzero value of 1.. Therefore, the peak turn rate is the same for
all turn angles, Therefore, the Aw term of Eq. (23) cancelsin the ratio in Table (16). The r term in
the eguation is an effective moment arm. Note from ‘I’able (1) that thruster coordinatesin {S) are
constant for all cases. However, the CM position depends on which mass property is used, BOM
or EOM. However note from Tables (2) and (3) that the CM offset has a dominant = component
which is approximately the same in both cases. Therefore, the r term in Eq. (23) is approximately
case independent and will cancel in the ratio in Table (16). This leaves the square of the radius
of gyration. This depends only on the mass property. As indicated in Table (16), the ratio of the
squares of the radii of gyration is approximately 1.52. This theoretically is the velocity ratio. The
ratios in the table are generated by simulation and average out to 1,35. This is considered to be
excellent agreement considering the approximations and scalar form of Eq. (23).

Table (17) shows the same results for the z facing thrusters. It is left to the reader to see that
all approximations used in Table (16) apply here as well. Excluding the ratio for 8,, = 180°, the
average of the smulated ratios is = 1.57 compared to the theoretical value of 1.52 based on Eq. (23).
Again, this is considered to be excellent agrecment.
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(zezemn) ? 152

Te(sOM)

8 SIMULATION RESULTS

6r0 (degs) | AVioronr) (m/scc) | AVionon (m/sce) | gyreieorl
10 5.802% 1072 4174+ 1077 1.41
20 15111073 11361073 1.33
30 2468+ 10~3 1.830+ 1073 1.35
60 5156+ 1073 3.8454+ 109 1.34
90 7.493%10°% 5.5084 10~3 1.34
120 0.311+10°3 6.959% 10-3 1.34
150 1.043+107 2 7.858% 10-3 1.33
180 1.092+107% 8.207% 1073 1.33

Average of %?i”—‘—’—“—')= 1.35

ro{BOM)

‘I"able 16: Radius of gyration test using x facing thrusters

(-'—-’!-'?2*-'1)2 r~ 1.52

AletBom) .
bro (degs) | AVioponm) (m/sec) | AVionom) ((m/sec) ?zfé”f":—(' (io_gzﬁ
_ 30 1.616%10°2 1.049%10°2 1.54
[~ 60 — 1481+ 10-2 | ~O513# Ib-3 1.56
790 1.226+ 102 7.931+#10°3 1.56
120 899441073 5.807 #1003 1.55
[~ _150 5294.10° 3.261+10°° 1.62
180~ 2.158%10°° 5.601+10°7 3.85

Average of 2YreiE0M) = 157 excluding 0, = )80°

ro(BOM)

Table 17: Radius of gyration test using z facing thrusters
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9 Conclusions

The half angle models of Egs. (17) and (18) are excellent first order approximate ions under symmetric
conditions (Section (5.2)). However, asymmetries due to diflerences in torque magnitudes of accelera
tion and deacceleration phase thrusters lead to noticeable and sometimes significant deviations from
the half angle formula. The proportionality of the final velocity magnitude to the radius of gyration
squared in Eq. (23) isalso an excellent first order approximation. The above models enable the first
order determination of CM velocity characteristics without using the costly albeit greater power of
ROTRAN .
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